
Python 3

Introduction

• Python is an easy to learn, powerful programming language. It has

efficient high-level data structures and a simple but effective

approach to object-oriented programming. Python’s elegant syntax

and dynamic typing, together with its interpreted nature, make it an

ideal language for scripting and rapid application development in

many areas on most platforms.

• The Python interpreter and the extensive standard library are freely

available in source or binary form for all major platforms from the

Python Web site, https://www.python.org/, and may be freely

distributed. The same site also contains distributions of and

pointers to many free third party Python modules, programs and

tools, and additional documentation

Introduction

• Python is simpler to use, available on Windows, Mac OS X, and

Unix operating systems, and will help you get the job done more

quickly.

• Python is simple to use, but it is a real programming language,

offering much more structure and support for large programs

than shell scripts or batch files can offer. On the other hand,

Python also offers much more error checking than C, and, being

a very-high-level language, it has high-level data types built in,

such as flexible arrays and dictionaries. Because of its more

general data types Python is applicable to a much larger problem

domain than Awk or even Perl, yet many things are at least as

easy in Python as in those languages.

Introduction

• Python allows you to split your program into modules that can be

reused in other Python programs. It comes with a large collection of

standard modules that you can use as the basis of your programs —

or as examples to start learning to program in Python. Some of these

modules provide things like file I/O, system calls, sockets, and even

interfaces to graphical user interface toolkits like Tk.

• Python is an interpreted language, which can save you considerable

time during program development because no compilation and linking

is necessary. The interpreter can be used interactively, which makes it

easy to experiment with features of the language, to write throw-away

programs, or to test functions during bottom-up program

development. It is also a handy desk calculator.

Introduction

• Python enables programs to be written compactly and

readably. Programs written in Python are typically much

shorter than equivalent C, C++, or Java programs, for

several reasons:

• the high-level data types allow you to express complex

operations in a single statement;

• statement grouping is done by indentation instead of

beginning and ending brackets;

• no variable or argument declarations are necessary.

Introduction

• Python is extensible: if you know how to program in C

it is easy to add a new built-in function or module to

the interpreter, either to perform critical operations at

maximum speed, or to link Python programs to

libraries that may only be available in binary form

(such as a vendor-specific graphics library). Once

you are really hooked, you can link the Python

interpreter into an application written in C and use it

as an extension or command language for that

application.

Using the Python Interpreter

• The Python interpreter is usually installed as

/usr/local/bin/python3.8 on those machines where it is

available; putting /usr/local/bin in your Unix shell’s search

path makes it possible to start it by typing the command:

• python3.8

• to the shell.

• On Windows machines where you have installed Python from

the Microsoft Store, the python3.8 command will be available.

If you have the py.exe launcher installed, you can use the py

command.

Using the Python Interpreter

• Typing an end-of-file character (Control-D on Unix, Control-

Z on Windows) at the primary prompt causes the

interpreter to exit with a zero exit status. If that doesn’t

work, you can exit the interpreter by typing the following

command: quit().

• The interpreter operates somewhat like the Unix shell:

when called with standard input connected to a tty device,

it reads and executes commands interactively; when called

with a file name argument or with a file as standard input, it

reads and executes a script from that file.

Using the Python Interpreter

• A second way of starting the interpreter is python -c

command [arg] ..., which executes the statement(s)

in command, analogous to the shell’s -c option. Since

Python statements often contain spaces or other

characters that are special to the shell, it is usually

advised to quote command in its entirety with single

quotes.

Using the Python Interpreter

• Some Python modules are also useful as scripts.

These can be invoked using python -m module [arg]

..., which executes the source file for module as if you

had spelled out its full name on the command line.

• When a script file is used, it is sometimes useful to be

able to run the script and enter interactive mode

afterwards. This can be done by passing -i before the

script.

Argument Passing

• When known to the interpreter, the script name and additional

arguments thereafter are turned into a list of strings and assigned to the

argv variable in the sys module. You can access this list by executing

import sys. The length of the list is at least one; when no script and no

arguments are given, sys.argv[0] is an empty string. When the script

name is given as '-' (meaning standard input), sys.argv[0] is set to '-'.

When -c command is used, sys.argv[0] is set to '-c'. When -m module is

used, sys.argv[0] is set to the full name of the located module. Options

found after -c command or -m module are not consumed by the Python

interpreter’s option processing but left in sys.argv for the command or

module to handle.

Interactive Mode

• When commands are read from a tty, the interpreter is said

to be in interactive mode. In this mode it prompts for the

next command with the primary prompt, usually three

greater-than signs (>>>); for continuation lines it prompts

with the secondary prompt, by default three dots (...). The

interpreter prints a welcome message stating its version

number and a copyright notice before printing the first

prompt:

Interactive Mode

• Continuation lines are needed when entering a multi-

line construct. As an example, take a look at this if

statement:

• >>>

The Interpreter and Its

Environment
• By default, Python source files are treated as encoded in UTF-8. In that

encoding, characters of most languages in the world can be used

simultaneously in string literals, identifiers and comments — although the

standard library only uses ASCII characters for identifiers, a convention

that any portable code should follow. To display all these characters

properly, your editor must recognize that the file is UTF-8, and it must use

a font that supports all the characters in the file.

• To declare an encoding other than the default one, a special comment

line should be added as the first line of the file. The syntax is as follows:

• where encoding is one of the valid codecs supported by Python.

Source Code Encoding

• For example, to declare that Windows-1252 encoding is to be

used, the first line of your source code file should be:

• One exception to the first line rule is when the source code

starts with a UNIX “shebang” line. In this case, the encoding

declaration should be added as the second line of the file. For

example:

An Informal Introduction to

Python

• In the following examples, input and output are

distinguished by the presence or absence of prompts

(>>> and …): to repeat the example, you must type

everything after the prompt, when the prompt

appears; lines that do not begin with a prompt are

output from the interpreter. Note that a secondary

prompt on a line by itself in an example means you

must type a blank line; this is used to end a multi-line

command.

An Informal Introduction to

Python

• Many of the examples in this manual, even those entered at

the interactive prompt, include comments. Comments in

Python start with the hash character, #, and extend to the

end of the physical line. A comment may appear at the start

of a line or following whitespace or code, but not within a

string literal. A hash character within a string literal is just a

hash character. Since comments are to clarify code and are

not interpreted by Python, they may be omitted when typing

in examples.

Numbers

• The interpreter acts as a simple calculator: you can

type an expression at it and it will write the value.

Expression syntax is straightforward: the operators +,

-, * and / work just like in most other languages (for

example, Pascal or C); parentheses (()) can be used

for grouping. For example:

Numbers

• The integer numbers (e.g. 2, 4, 20) have type int, the ones with

a fractional part (e.g. 5.0, 1.6) have type float. We will see more

about numeric types later in the tutorial.

• Division (/) always returns a float. To do floor division and get an

integer result (discarding any fractional result) you can use the //

operator; to calculate the remainder you can use %:

Numbers

• With Python, it is possible to use the ** operator to

calculate powers 1:

Numbers

• The equal sign (=) is used to assign a value to a

variable. Afterwards, no result is displayed before the

next interactive prompt:

Numbers

• If a variable is not “defined” (assigned a value), trying to use it

will give you an error:

• There is full support for floating point; operators with mixed

type operands convert the integer operand to floating point:

Numbers

• In interactive mode, the last printed expression is

assigned to the variable _. This means that when you

are using Python as a desk calculator, it is somewhat

easier to continue calculations, for example:

Numbers

• This variable should be treated as read-only by the user.

Don’t explicitly assign a value to it — you would create an

independent local variable with the same name masking

the built-in variable with its magic behavior.

• In addition to int and float, Python supports other types of

numbers, such as Decimal and Fraction. Python also has

built-in support for complex numbers, and uses the j or J

suffix to indicate the imaginary part (e.g. 3+5j).

Strings

• Python can also manipulate strings, which can be

expressed in several ways. They can be enclosed in

single quotes ('...') or double quotes ("...") with the

same result 2. \ can be used to escape quotes:

Strings

• In the interactive interpreter, the output string is enclosed in quotes

and special characters are escaped with backslashes. While this

might sometimes look different from the input (the enclosing quotes

could change), the two strings are equivalent. The string is enclosed

in double quotes if the string contains a single quote and no double

quotes, otherwise it is enclosed in single quotes. The print() function

produces a more readable output, by omitting the enclosing quotes

and by printing escaped and special characters:

Strings

• If you don’t want characters prefaced by \ to be

interpreted as special characters, you can use raw

strings by adding an r before the first quote:

Strings

• String literals can span multiple lines. One way is

using triple-quotes: """...""" or '''...'''. End of lines are

automatically included in the string, but it’s possible to

prevent this by adding a \ at the end of the line. The

following example:

Strings

• produces the following output (note that the initial

newline is not included):

• Strings can be concatenated (glued together) with

the + operator, and repeated with *:

Strings

• Two or more string literals (i.e. the ones enclosed

between quotes) next to each other are automatically

concatenated.

• This feature is particularly useful when you want to

break long strings:

Strings

• This only works with two literals though, not with

variables or expressions:

Strings

• If you want to concatenate variables or a variable and

a literal, use +:

Strings

• Strings can be indexed (subscripted), with the first

character having index 0. There is no separate

character type; a character is simply a string of size

one:

Strings

• Indices may also be negative numbers, to start

counting from the right:

Strings

• Note that since -0 is the same as 0, negative indices start

from -1.

• In addition to indexing, slicing is also supported. While

indexing is used to obtain individual characters, slicing

allows you to obtain substring:

Strings

• Note how the start is always included, and the end

always excluded. This makes sure that s[:i] + s[i:] is

always equal to s:

Strings

• Slice indices have useful defaults; an omitted first

index defaults to zero, an omitted second index

defaults to the size of the string being sliced.

Strings

• One way to remember how slices work is to think of

the indices as pointing between characters, with the

left edge of the first character numbered 0. Then the

right edge of the last character of a string of n

characters has index n, for example:

Strings

• The first row of numbers gives the position of the

indices 0…6 in the string; the second row gives the

corresponding negative indices. The slice from i to j

consists of all characters between the edges labeled i

and j, respectively.

• For non-negative indices, the length of a slice is the

difference of the indices, if both are within bounds.

For example, the length of word[1:3] is 2.

Strings

• Attempting to use an index that is too large will result

in an error:

Strings

• However, out of range slice indexes are handled

gracefully when used for slicing:

Strings

• Python strings cannot be changed — they are

immutable. Therefore, assigning to an indexed

position in the string results in an error:

Strings

• If you need a different string, you should create a new

one:

• The built-in function len() returns the length of a

string:

String Methods

• str.capitalize()

• Return a copy of the string with its first character

capitalized and the rest lowercased.

• Changed in version 3.8: The first character is now

put into titlecase rather than uppercase. This

means that characters like digraphs will only have

their first letter capitalized, instead of the full

character.

String Methods
• str.casefold()

• Return a casefolded copy of the string. Casefolded strings may be

used for caseless matching.

• Casefolding is similar to lowercasing but more aggressive because it

is intended to remove all case distinctions in a string. For example,

the German lowercase letter 'ß' is equivalent to "ss". Since it is

already lowercase, lower() would do nothing to 'ß'; casefold()

converts it to "ss".

• The casefolding algorithm is described in section 3.13 of the

Unicode Standard.

• New in version 3.3.

String Methods

• str.center(width[, fillchar])

• Return centered in a string of length width. Padding is done

using the specified fillchar (default is an ASCII space). The

original string is returned if width is less than or equal to len(s).

• str.count(sub[, start[, end]])

• Return the number of non-overlapping occurrences of substring

sub in the range [start, end]. Optional arguments start and end

are interpreted as in slice notation.

String Methods

• str.encode(encoding="utf-8", errors="strict")

• Return an encoded version of the string as a bytes object.

Default encoding is 'utf-8'. errors may be given to set a different

error handling scheme. The default for errors is 'strict', meaning

that encoding errors raise a UnicodeError.

• str.endswith(suffix[, start[, end]])

• Return True if the string ends with the specified suffix,

otherwise return False. suffix can also be a tuple of suffixes to

look for. With optional start, test beginning at that position. With

optional end, stop comparing at that position.

String Methods

• str.expandtabs(tabsize=8)

• Return a copy of the string where all tab characters are replaced by

one or more spaces, depending on the current column and the

given tab size. Tab positions occur every tabsize characters (default

is 8, giving tab positions at columns 0, 8, 16 and so on). To expand

the string, the current column is set to zero and the string is

examined character by character. If the character is a tab (\t), one

or more space characters are inserted in the result until the current

column is equal to the next tab position. (The tab character itself is

not copied.) If the character is a newline (\n) or return (\r), it is

copied and the current column is reset to zero. Any other character

is copied unchanged and the current column is incremented by one

regardless of how the character is represented when printed.

String Methods
• Example:

• str.find(sub[, start[, end]])

• Return the lowest index in the string where substring sub is

found within the slice s[start:end]. Optional arguments start and

end are interpreted as in slice notation. Return -1 if sub is not

found.

String Methods

• str.format(*args, **kwargs)

• Perform a string formatting operation. The string on

which this method is called can contain literal text or

replacement fields delimited by braces {}. Each

replacement field contains either the numeric index of

a positional argument, or the name of a keyword

argument. Returns a copy of the string where each

replacement field is replaced with the string value of

the corresponding argument.

String Methods

• str.index(sub[, start[, end]])

• Like find(), but raise ValueError when the substring is

not found.

• str.isalnum()

• Return True if all characters in the string are

alphanumeric and there is at least one character, False

otherwise. A character c is alphanumeric if one of the

following returns True: c.isalpha(), c.isdecimal(),

c.isdigit(), or c.isnumeric().

String Methods
• str.isalpha()

• Return True if all characters in the string are alphabetic and there is at least

one character, False otherwise. Alphabetic characters are those characters

defined in the Unicode character database as “Letter”, i.e., those with

general category property being one of “Lm”, “Lt”, “Lu”, “Ll”, or “Lo”. Note

that this is different from the “Alphabetic” property defined in the Unicode

Standard.

• str.isascii()

• Return True if the string is empty or all characters in the string are ASCII,

False otherwise. ASCII characters have code points in the range U+0000-

U+007F.

• New in version 3.7.

String Methods
• str.isdecimal()

• Return True if all characters in the string are decimal characters and there

is at least one character, False otherwise. Decimal characters are those

that can be used to form numbers in base 10, e.g. U+0660, ARABIC-INDIC

DIGIT ZERO. Formally a decimal character is a character in the Unicode

General Category “Nd”.

• str.isdigit()

• Return True if all characters in the string are digits and there is at least one

character, False otherwise. Digits include decimal characters and digits that

need special handling, such as the compatibility superscript digits. This

covers digits which cannot be used to form numbers in base 10, like the

Kharosthi numbers. Formally, a digit is a character that has the property

value Numeric_Type=Digit or Numeric_Type=Decimal.

String Methods

• str.isidentifier()

• Return True if the string is a valid identifier

according to the language definition

String Methods

• str.islower()

• Return True if all cased characters 4 in the string are lowercase

and there is at least one cased character, False otherwise.

• str.isnumeric()

• Return True if all characters in the string are numeric characters,

and there is at least one character, False otherwise. Numeric

characters include digit characters, and all characters that have the

Unicode numeric value property, e.g. U+2155, VULGAR

FRACTION ONE FIFTH. Formally, numeric characters are those

with the property value Numeric_Type=Digit,

Numeric_Type=Decimal or Numeric_Type=Numeric.

String Methods

• str.isprintable()

• Return True if all characters in the string are printable or the string is empty, False

otherwise. Nonprintable characters are those characters defined in the Unicode

character database as “Other” or “Separator”, excepting the ASCII space (0x20)

which is considered printable. (Note that printable characters in this context are

those which should not be escaped when repr() is invoked on a string. It has no

bearing on the handling of strings written to sys.stdout or sys.stderr.)

• str.isspace()

• Return True if there are only whitespace characters in the string and there is at least

one character, False otherwise.

• A character is whitespace if in the Unicode character database (see unicodedata),

either its general category is Zs (“Separator, space”), or its bidirectional class is one

of WS, B, or S.

String Methods

• str.istitle()

• Return True if the string is a titlecased string and there is at

least one character, for example uppercase characters

may only follow uncased characters and lowercase

characters only cased ones. Return False otherwise.

• str.isupper()

• Return True if all cased characters 4 in the string are

uppercase and there is at least one cased character, False

otherwise.

String Methods

• str.join(iterable)

• Return a string which is the concatenation of the strings in

iterable. A TypeError will be raised if there are any non-string

values in iterable, including bytes objects. The separator

between elements is the string providing this method.

• str.ljust(width[, fillchar])

• Return the string left justified in a string of length width. Padding

is done using the specified fillchar (default is an ASCII space).

The original string is returned if width is less than or equal to

len(s).

String Methods

• str.lower()

• Return a copy of the string with all the cased characters

4 converted to lowercase.

• str.lstrip([chars])

• Return a copy of the string with leading characters

removed. The chars argument is a string specifying the

set of characters to be removed. If omitted or None, the

chars argument defaults to removing whitespace.

String Methods
• static str.maketrans(x[, y[, z]])

• This static method returns a translation table usable for

str.translate().

• If there is only one argument, it must be a dictionary mapping

Unicode ordinals (integers) or characters (strings of length 1) to

Unicode ordinals, strings (of arbitrary lengths) or None. Character

keys will then be converted to ordinals.

• If there are two arguments, they must be strings of equal length, and

in the resulting dictionary, each character in x will be mapped to the

character at the same position in y. If there is a third argument, it

must be a string, whose characters will be mapped to None in the

result.

String Methods

• str.partition(sep)

• Split the string at the first occurrence of sep, and return a 3-

tuple containing the part before the separator, the separator

itself, and the part after the separator. If the separator is not

found, return a 3-tuple containing the string itself, followed by

two empty strings.

• str.replace(old, new[, count])

• Return a copy of the string with all occurrences of substring old

replaced by new. If the optional argument count is given, only

the first count occurrences are replaced.

String Methods

• str.rfind(sub[, start[, end]])

• Return the highest index in the string where substring

sub is found, such that sub is contained within

s[start:end]. Optional arguments start and end are

interpreted as in slice notation. Return -1 on failure.

• str.rindex(sub[, start[, end]])

• Like rfind() but raises ValueError when the substring

sub is not found.

String Methods

• str.rjust(width[, fillchar])

• Return the string right justified in a string of length width. Padding

is done using the specified fillchar (default is an ASCII space).

The original string is returned if width is less than or equal to

len(s).

• str.rpartition(sep)

• Split the string at the last occurrence of sep, and return a 3-tuple

containing the part before the separator, the separator itself, and

the part after the separator. If the separator is not found, return a

3-tuple containing two empty strings, followed by the string itself.

String Methods

• str.rsplit(sep=None, maxsplit=-1)

• Return a list of the words in the string, using sep as the delimiter

string. If maxsplit is given, at most maxsplit splits are done, the

rightmost ones. If sep is not specified or None, any whitespace

string is a separator. Except for splitting from the right, rsplit()

behaves like split() which is described in detail below.

• str.rstrip([chars])

• Return a copy of the string with trailing characters removed. The

chars argument is a string specifying the set of characters to be

removed. If omitted or None, the chars argument defaults to

removing whitespace.

String Methods
• str.split(sep=None, maxsplit=-1)

• Return a list of the words in the string, using sep as the delimiter

string. If maxsplit is given, at most maxsplit splits are done (thus,

the list will have at most maxsplit+1 elements). If maxsplit is not

specified or -1, then there is no limit on the number of splits (all

possible splits are made).

• If sep is given, consecutive delimiters are not grouped together

and are deemed to delimit empty strings (for example,

'1,,2'.split(',') returns ['1', '', '2']). The sep argument may consist of

multiple characters (for example, '1<>2<>3'.split('<>') returns ['1',

'2', '3']). Splitting an empty string with a specified separator returns

[''].

String Methods

• If sep is not specified or is None, a different splitting

algorithm is applied: runs of consecutive whitespace are

regarded as a single separator, and the result will contain

no empty strings at the start or end if the string has

leading or trailing whitespace. Consequently, splitting an

empty string or a string consisting of just whitespace with

a None separator returns [].

String Methods

• str.splitlines([keepends])

• Return a list of the lines in the string, breaking at line

boundaries. Line breaks are not included in the

resulting list unless keepends is given and true.

String Methods
• str.startswith(prefix[, start[, end]])

• Return True if string starts with the prefix, otherwise return False.

prefix can also be a tuple of prefixes to look for. With optional start,

test string beginning at that position. With optional end, stop

comparing string at that position.

• str.strip([chars])

• Return a copy of the string with the leading and trailing characters

removed. The chars argument is a string specifying the set of

characters to be removed. If omitted or None, the chars argument

defaults to removing whitespace.

String Methods

• str.swapcase()

• Return a copy of the string with uppercase characters

converted to lowercase and vice versa. Note that it is

not necessarily true that s.swapcase().swapcase() == s.

• str.title()

• Return a titlecased version of the string where words

start with an uppercase character and the remaining

characters are lowercase.

String Methods

• str.upper()

• Return a copy of the string with all the cased characters 4 converted

to uppercase. Note that s.upper().isupper() might be False if s

contains uncased characters or if the Unicode category of the

resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt”

(Letter, titlecase).

• str.zfill(width)

• Return a copy of the string left filled with ASCII '0' digits to make a

string of length width. A leading sign prefix ('+'/'-') is handled by

inserting the padding after the sign character rather than before.

The original string is returned if width is less than or equal to len(s).

