
Python 3



Data Structures

More on Lists
• The list data type has some more methods. Here are all of the methods of list 

objects:

• list.append(x)

• Add an item to the end of the list. Equivalent to a[len(a):] = [x].

• list.extend(iterable)

• Extend the list by appending all the items from the iterable. Equivalent to 

a[len(a):] = iterable.

• list.insert(i, x)

• Insert an item at a given position. The first argument is the index of the element 

before which to insert, so a.insert(0, x) inserts at the front of the list, and 

a.insert(len(a), x) is equivalent to a.append(x).



More on Lists

• list.remove(x)

• Remove the first item from the list whose value is equal to x. It raises a 

ValueError if there is no such item.

• list.pop([i])

• Remove the item at the given position in the list, and return it. If no index is 

specified, a.pop() removes and returns the last item in the list. (The square 

brackets around the i in the method signature denote that the parameter is 

optional, not that you should type square brackets at that position. You will see 

this notation frequently in the Python Library Reference.)

• list.clear()

• Remove all items from the list. Equivalent to del a[:].



More on Lists
• list.index(x[, start[, end]])

• Return zero-based index in the list of the first item whose 

value is equal to x. Raises a ValueError if there is no such 

item. The optional arguments start and end are interpreted 

as in the slice notation and are used to limit the search to a 

particular subsequence of the list. The returned index is 

computed relative to the beginning of the full sequence 

rather than the start argument.

• list.count(x)

• Return the number of times x appears in the list.



More on Lists
• list.sort(key=None, reverse=False)

• Sort the items of the list in place (the arguments can be 

used for sort customization, see sorted() for their 

explanation). 

• list.reverse()

• Reverse the elements of the list in place.

• list.copy()

• Return a shallow copy of the list. Equivalent to a[:].



More on Lists



More on Lists

• You might have noticed that methods like insert, remove or 

sort that only modify the list have no return value printed –

they return the default None. 1 This is a design principle for 

all mutable data structures in Python.

• Another thing you might notice is that not all data can be 

sorted or compared. For instance, [None, 'hello', 10] 

doesn’t sort because integers can’t be compared to strings 

and None can’t be compared to other types. Also, there are 

some types that don’t have a defined ordering relation. For 

example, 3+4j < 5+7j isn’t a valid comparison.



Using Lists as Stacks

• The list methods make it very 

easy to use a list as a stack, 

where the last element added is 

the first element retrieved (“last-

in, first-out”). To add an item to 

the top of the stack, use 

append(). To retrieve an item 

from the top of the stack, use 

pop() without an explicit index. 

For example:



Using Lists as Queues

• It is also possible to use a list as a queue, where the 

first element added is the first element retrieved 

(“first-in, first-out”); however, lists are not efficient for 

this purpose. While appends and pops from the end 

of list are fast, doing inserts or pops from the 

beginning of a list is slow (because all of the other 

elements have to be shifted by one).

• To implement a queue, use collections.deque which 

was designed to have fast appends and pops from 

both ends.



Using Lists as Queues

• Example:



List Comprehensions

• List comprehensions provide a concise way to create lists. 

Common applications are to make new lists where each 

element is the result of some operations applied to each 

member of another sequence or iterable, or to create a 

subsequence of those elements that satisfy a certain 

condition.

• For example, assume we want to create a list of squares, like:



List Comprehensions

• Note that this creates (or overwrites) a variable 

named x that still exists after the loop completes. We 

can calculate the list of squares without any side 

effects using:

• or, equivalently:



List Comprehensions

• A list comprehension consists of brackets containing 

an expression followed by a for clause, then zero or 

more for or if clauses. The result will be a new list 

resulting from evaluating the expression in the context 

of the for and if clauses which follow it. For example, 

this listcomp combines the elements of two lists if they 

are not equal:



List Comprehensions
• and it’s equivalent to:

• Note how the order of the for and if statements is the same in both 

these snippets.

• If the expression is a tuple (e.g. the (x, y) in the previous example), it 

must be parenthesized.



List Comprehensions



List Comprehensions

• List comprehensions can contain complex 

expressions and nested functions:



Nested List Comprehensions

• The initial expression in a list comprehension can be 

any arbitrary expression, including another list 

comprehension.

• Consider the following example of a 3x4 matrix 

implemented as a list of 3 lists of length 4:



Nested List Comprehensions

• The following list comprehension will transpose rows 

and columns:



Nested List Comprehensions

• As we saw in the previous section, the nested 

listcomp is evaluated in the context of the for that 

follows it, so this example is equivalent to:



Nested List Comprehensions

• which, in turn, is the same as:



Nested List Comprehensions

• In the real world, you should prefer built-in functions 

to complex flow statements. The zip() function would 

do a great job for this use case:



The del statement

• There is a way to remove an item from a list given its index 

instead of its value: the del statement. This differs from the 

pop() method which returns a value. The del statement 

can also be used to remove slices from a list or clear the 

entire list (which we did earlier by assignment of an empty 

list to the slice). For example:



The del statement

• del can also be used to delete entire variables:

• Referencing the name a hereafter is an error (at least 

until another value is assigned to it). 



Tuples and Sequences

• We saw that lists and strings have many common 

properties, such as indexing and slicing operations. 

They are two examples of sequence data types. Since 

Python is an evolving language, other sequence data 

types may be added. There is also another standard 

sequence data type: the tuple.



Tuples and Sequences

• A tuple consists of a number of values separated by 

commas, for instance:



Tuples and Sequences

• As you see, on output tuples are always enclosed in parentheses, so 

that nested tuples are interpreted correctly; they may be input with or 

without surrounding parentheses, although often parentheses are 

necessary anyway (if the tuple is part of a larger expression). It is not 

possible to assign to the individual items of a tuple, however it is 

possible to create tuples which contain mutable objects, such as lists.

• Though tuples may seem similar to lists, they are often used in different 

situations and for different purposes. Tuples are immutable, and 

usually contain a heterogeneous sequence of elements that are 

accessed via unpacking (see later in this section) or indexing (or even 

by attribute in the case of namedtuples). Lists are mutable, and their 

elements are usually homogeneous and are accessed by iterating over 

the list.



Tuples and Sequences

• A special problem is the construction of tuples containing 0 or 

1 items: the syntax has some extra quirks to accommodate 

these. Empty tuples are constructed by an empty pair of 

parentheses; a tuple with one item is constructed by following 

a value with a comma (it is not sufficient to enclose a single 

value in parentheses). Ugly, but effective. For example:



Tuples and Sequences
• The statement t = 12345, 54321, 'hello!' is an example of tuple 

packing: the values 12345, 54321 and 'hello!' are packed together 

in a tuple. The reverse operation is also possible:

• This is called, appropriately enough, sequence unpacking and 

works for any sequence on the right-hand side. Sequence 

unpacking requires that there are as many variables on the left side 

of the equals sign as there are elements in the sequence. Note that 

multiple assignment is really just a combination of tuple packing and 

sequence unpacking.



Sets

• Python also includes a data type for sets. A set is an 

unordered collection with no duplicate elements. 

Basic uses include membership testing and 

eliminating duplicate entries. Set objects also support 

mathematical operations like union, intersection, 

difference, and symmetric difference.

• Curly braces or the set() function can be used to 

create sets. Note: to create an empty set you have to 

use set(), not {}; the latter creates an empty dictionary



Sets

• Here is a brief demonstration:



Sets

• Similarly to list comprehensions, set comprehensions 

are also supported:



Dictionaries

• Another useful data type built into Python is the dictionary. 

Dictionaries are sometimes found in other languages as 

“associative memories” or “associative arrays”. Unlike 

sequences, which are indexed by a range of numbers, 

dictionaries are indexed by keys, which can be any 

immutable type; strings and numbers can always be keys. 

Tuples can be used as keys if they contain only strings, 

numbers, or tuples; if a tuple contains any mutable object 

either directly or indirectly, it cannot be used as a key. You 

can’t use lists as keys, since lists can be modified in place 

using index assignments, slice assignments, or methods like 

append() and extend().



Dictionaries
• It is best to think of a dictionary as a set of key: value pairs, 

with the requirement that the keys are unique (within one 

dictionary). A pair of braces creates an empty dictionary: {}. 

Placing a comma-separated list of key:value pairs within the 

braces adds initial key:value pairs to the dictionary; this is 

also the way dictionaries are written on output.

• The main operations on a dictionary are storing a value with 

some key and extracting the value given the key. It is also 

possible to delete a key:value pair with del. If you store using 

a key that is already in use, the old value associated with that 

key is forgotten. It is an error to extract a value using a non-

existent key.



Dictionaries

• Performing list(d) on a dictionary returns a list of all 

the keys used in the dictionary, in insertion order (if 

you want it sorted, just use sorted(d) instead). To 

check whether a single key is in the dictionary, use 

the in keyword.



Dictionaries

• Performing list(d) on a 

dictionary returns a list of all 

the keys used in the 

dictionary, in insertion order 

(if you want it sorted, just use 

sorted(d) instead). To check 

whether a single key is in the 

dictionary, use the in 

keyword.



Dictionaries

• The dict() constructor builds dictionaries directly from 

sequences of key-value pairs:

• In addition, dict comprehensions can be used to 

create dictionaries from arbitrary key and value 

expressions:



Dictionaries

• When the keys are simple strings, it is sometimes 

easier to specify pairs using keyword arguments:



Looping Techniques

• When looping through dictionaries, the key and 

corresponding value can be retrieved at the same 

time using the items() method.



Looping Techniques

• When looping through a sequence, the position index 

and corresponding value can be retrieved at the 

same time using the enumerate() function.



Looping Techniques

• To loop over two or more sequences at the same 

time, the entries can be paired with the zip() function.



Looping Techniques

• To loop over a sequence in reverse, first specify the 

sequence in a forward direction and then call the 

reversed() function.



Looping Techniques

• To loop over a sequence in sorted order, use the 

sorted() function which returns a new sorted list while 

leaving the source unaltered.



Looping Techniques

• It is sometimes tempting to change a list while you are 

looping over it; however, it is often simpler and safer 

to create a new list instead.



More on Conditions

• The conditions used in while and if statements can contain 

any operators, not just comparisons.

• The comparison operators in and not in check whether a 

value occurs (does not occur) in a sequence. The operators 

is and is not compare whether two objects are really the 

same object; this only matters for mutable objects like lists. 

All comparison operators have the same priority, which is 

lower than that of all numerical operators.

• Comparisons can be chained. For example, a < b == c tests 

whether a is less than b and moreover b equals c.



More on Conditions

• Comparisons may be combined using the Boolean operators and and 

or, and the outcome of a comparison (or of any other Boolean 

expression) may be negated with not. These have lower priorities than 

comparison operators; between them, not has the highest priority and 

or the lowest, so that A and not B or C is equivalent to (A and (not B)) 

or C. As always, parentheses can be used to express the desired 

composition.

• The Boolean operators and and or are so-called short-circuit 

operators: their arguments are evaluated from left to right, and 

evaluation stops as soon as the outcome is determined. For example, 

if A and C are true but B is false, A and B and C does not evaluate the 

expression C. When used as a general value and not as a Boolean, the 

return value of a short-circuit operator is the last evaluated argument.



More on Conditions

• It is possible to assign the result of a comparison or other 

Boolean expression to a variable. For example,

• Note that in Python, unlike C, assignment inside 

expressions must be done explicitly with the walrus 

operator :=. This avoids a common class of problems 

encountered in C programs: typing = in an expression 

when == was intended.



Comparing Sequences and 

Other Types
• Sequence objects typically may be compared to other objects 

with the same sequence type. The comparison uses 

lexicographical ordering: first the first two items are compared, 

and if they differ this determines the outcome of the comparison; 

if they are equal, the next two items are compared, and so on, 

until either sequence is exhausted. If two items to be compared 

are themselves sequences of the same type, the lexicographical 

comparison is carried out recursively. If all items of two 

sequences compare equal, the sequences are considered equal. 

If one sequence is an initial sub-sequence of the other, the 

shorter sequence is the smaller (lesser) one. Lexicographical 

ordering for strings uses the Unicode code point number to order 

individual characters.



Comparing Sequences and 

Other Types
• Some examples of comparisons between sequences of the same type:

• Note that comparing objects of different types with < or > is legal provided 

that the objects have appropriate comparison methods. For example, 

mixed numeric types are compared according to their numeric value, so 0 

equals 0.0, etc. Otherwise, rather than providing an arbitrary ordering, the 

interpreter will raise a TypeError exception.


